Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Imaging ; 24(1): 94, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649862

ABSTRACT

BACKGROUND: Large field of view CZT SPECT cameras with a ring geometry are available for some years now. Thanks to their good sensitivity and high temporal resolution, general dynamic SPECT imaging may be performed more easily, without resorting to dedicated systems. To evaluate the dynamic SPECT imaging by such cameras, we have performed an in vivo pilot study to analyze the kidney function of a pig and compare the results to standard dynamic planar imaging by a conventional gamma camera. METHODS: A 7-week-old (12 kg) female Landrace pig was injected with [99mTc]Tc-MAG3 and a 30 min dynamic SPECT acquisition of the kidneys was performed on a CZT ring camera. A fast SPECT/CT was acquired with the same camera immediately after the dynamic SPECT, without moving the pig, and used for attenuation correction and drawing regions of interest. The next day the same pig underwent a dynamic planar imaging of the kidneys by a conventional 2-head gamma camera. The dynamic SPECT acquisition was reconstructed using a MLEM algorithm with up to 20 iterations, with and without attenuation correction. Time-activity curves of the total counts of each kidney were extracted from 2D and 3D dynamic images. An adapted 2-compartment model was derived to fit the data points and extract physiological parameters. Comparison of these parameters was performed between the different reconstructions and acquisitions. RESULTS: Time-activity curves were nicely fitted with the 2-compartment model taking into account the anesthesia and bladder filling. Kidney physiological parameters were found in agreement with literature values. Good agreement of these parameters was obtained for the right kidney between dynamic SPECT and planar imaging. Regional analysis of the kidneys can be performed in the case of the dynamic SPECT imaging and provided good agreement with the whole kidney results. CONCLUSIONS: Dynamic SPECT imaging is feasible with CZT swiveling-detector ring cameras and provides results in agreement with dynamic planar imaging by conventional gamma cameras. Regional analysis of organs uptake and clearance becomes possible. Further studies are required regarding the optimization of acquisition and reconstruction parameters to improve image quality and enable absolute quantification.


Subject(s)
Gamma Cameras , Kidney , Tellurium , Tomography, Emission-Computed, Single-Photon , Zinc , Animals , Pilot Projects , Kidney/diagnostic imaging , Female , Swine , Tomography, Emission-Computed, Single-Photon/instrumentation , Tomography, Emission-Computed, Single-Photon/methods , Cadmium , Technetium Tc 99m Mertiatide , Algorithms , Radiopharmaceuticals
2.
J Clin Med ; 12(10)2023 May 20.
Article in English | MEDLINE | ID: mdl-37240675

ABSTRACT

Transplantation of heart following donation after circulatory death (DCD) was recently introduced into clinical practice. Ex vivo reperfusion following DCD and retrieval is deemed necessary in order to evaluate the recovery of cardiac viability after the period of warm ischemia. We tested the effect of four different temperatures (4 °C-18 °C-25 °C-35 °C) on cardiac metabolism during 3-h ex vivo reperfusion in a porcine model of DCD heart. We observed a steep fall in high-energy phosphate (ATP) concentrations in the myocardial tissue at the end of the warm ischemic time and only limited regeneration during reperfusion. Lactate concentration in the perfusate increased rapidly during the first hour of reperfusion and slowly decreased afterward. However, the temperature of the solution does not seem to have an effect on either ATP or lactate concentration. Furthermore, all cardiac allografts showed a significant weight increase due to cardiac edema, regardless of the temperature.

3.
Eur J Cardiothorac Surg ; 49(5): 1348-53, 2016 May.
Article in English | MEDLINE | ID: mdl-26604296

ABSTRACT

OBJECTIVES: Cardiac transplantation using hearts from donors after circulatory death (DCD) is critically limited by the unavoidable warm ischaemia and its related unpredictable graft function. Inasmuch as hypothermic machine perfusion (MP) has been shown to improve heart preservation, we hypothesized that MP could enable the use of DCD hearts for transplantation. METHODS: We recovered 16 pig hearts following anoxia-induced cardiac arrest and cardioplegia. Grafts were randomly assigned to two different groups of 4-h preservation using either static cold storage (CS) or MP (Modified LifePort© System, Organ Recovery Systems©, Itasca, Il). After preservation, the grafts were reperfused ex vivo using the Langendorff method for 60 min. Energetic charge was quantified at baseline, post-preservation and post-reperfusion by measuring lactate and high-energy phosphate levels. Left ventricular contractility parameters were assessed both in vivo prior to ischaemia and ex vivo during reperfusion. RESULTS: Following preservation, the hearts that were preserved using CS exhibited higher lactate levels (57.1 ± 23.7 vs 21.4 ± 12.2 µmol/g; P < 0.001), increased adenosine monophosphate/adenosine triphosphate ratio (0.53 ± 0.25 vs 0.11 ± 0.11; P < 0.001) and lower phosphocreatine/creatine ratio (9.7 ± 5.3 vs 25.2 ± 11; P < 0.001) in comparison with the MP hearts. Coronary flow was similar in both groups during reperfusion (107 ± 9 vs 125 ± 9 ml/100 g/min heart; P = ns). Contractility decreased in the CS group, yet remained well preserved in the MP group. CONCLUSION: MP preservation of DCD hearts results in improved preservation of the energy and improved functional recovery of heart grafts compared with CS.


Subject(s)
Heart Transplantation , Heart/physiology , Hypothermia, Induced , Myocardial Reperfusion , Tissue Preservation/methods , Tissue Preservation/statistics & numerical data , Transplants/physiology , Animals , Hypothermia, Induced/methods , Hypothermia, Induced/statistics & numerical data , Models, Cardiovascular , Myocardial Reperfusion/methods , Myocardial Reperfusion/statistics & numerical data , Shock , Swine , Tissue Donors
4.
Transpl Int ; 28(2): 224-31, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25265884

ABSTRACT

The number of heart transplants is decreasing due to organ shortage, yet the donor pool could be enlarged by improving graft preservation. Hypothermic machine perfusion (MP) has been shown to improve kidney, liver, or lung graft preservation. Sixteen pig hearts were recovered following cardioplegia and randomized to two different groups of 4-hour preservation using either static cold storage (CS) or MP (Modified LifePort© System, Organ Recovery Systems, Itasca, Il). The grafts then underwent reperfusion on a Langendorff for 60 min. Energetic metabolism was quantified at baseline, postpreservation, and postreperfusion by measuring lactate and high-energy phosphates. The contractility index (CI) was assessed both in vivo prior to cardioplegia and during reperfusion. Following reperfusion, the hearts preserved using CS exhibited higher lactate levels (56.63 ± 23.57 vs. 11.25 ± 3.92 µmol/g; P < 0.001), increased adenosine monophosphate/adenosine triphosphate (AMP/ATP) ratio (0.4 ± 0.23 vs. 0.04 ± 0.04; P < 0.001), and lower phosphocreatine/creatine (PCr/Cr) ratio (33.5 ± 12.6 vs. 55.3 ± 5.8; P <0.001). Coronary flow was similar in both groups during reperfusion (107 ± 9 vs. 125 + /-9 ml/100 g/min heart; P = ns). CI decreased in the CS group, yet being well-preserved in the MP group. Compared with CS, MP resulted in improved preservation of the energy state and more successful functional recovery of heart graft.


Subject(s)
Heart Transplantation , Myocardium/metabolism , Organ Preservation/instrumentation , Perfusion/instrumentation , Animals , Cold Temperature , Coronary Circulation , Energy Metabolism , Swine , Ventricular Function, Left
5.
Cell Transplant ; 23(11): 1349-64, 2014.
Article in English | MEDLINE | ID: mdl-23461890

ABSTRACT

Insufficient oxygenation can limit the long-term survival of encapsulated islets in subcutaneous tissue. Transplantation of coencapsulated pig islets with adipose or bone marrow mesenchymal stem cells (AMSCs or BM-MSCs, respectively) was investigated with regard to implant vascularization, oxygenation, and diabetes correction in primates. The in vivo impact of MSCs on graft oxygenation and neovascularization was assessed in rats with streptozotocin (STZ)-induced diabetes that were subcutaneously transplanted with islets coencapsulated with AMSCs (n = 8) or BM-MSCs (n = 6). Results were compared to islets encapsulated alone (n = 8). STZ diabetic primates were subcutaneously transplanted with islets coencapsulated with BM-MSCs (n = 4) or AMSCs (n = 6). Recipients were monitored metabolically and immunologically, and neoangiogenesis was assessed on explanted grafts. Results were compared with primates transplanted with islets encapsulated alone (n = 5). The cotransplantation of islets with BM-MSCs or AMSCs in diabetic rats showed significantly higher graft oxygenation than islets alone (3% and 3.6% O2 for islets + BM-MSCs or AMSCs, respectively, vs. 2.2% for islets alone). A significantly better glycated hemoglobin correction (28 weeks posttransplantation) was found for primates transplanted with islets and MSCs (7.4% and 8.1%, respectively) in comparison to islets encapsulated alone (10.9%). Greater neoangiogenesis was found in the periphery of coencapsulated islets and AMSCs in comparison to islets alone (p < 0.01). In conclusion, the coencapsulation of pig islets with MSCs can improve significantly the islets' survival/function in vitro. The coencapsulation of islets with MSCs improves implant oxygenation and neoangiogenesis. However, the cotransplantation of islets with MSCs improves only slightly the long-term function of a subcutaneous bioartificial pancreas in a primate preclinical model.


Subject(s)
Bioartificial Organs , Islets of Langerhans Transplantation/methods , Islets of Langerhans/cytology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Pancreas/blood supply , Animals , Cell Engineering/methods , Female , Islets of Langerhans/metabolism , Macaca fascicularis , Male , Mesenchymal Stem Cells/metabolism , Rats , Rats, Wistar , Swine , Transplantation, Heterologous/methods
6.
Biomaterials ; 34(18): 4428-38, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23507085

ABSTRACT

For critical size bone defects and bone non-unions, bone tissue engineering using osteoblastic differentiated adipose mesenchymal stem cells (AMSCs) is limited by the need for a biomaterial to support cell transplantation. An osteoblastic three-dimensional autologous graft made of AMSCs (3D AMSC) was developed to solve this issue. This autograft was obtained by supplementing the osteoblastic differentiation medium with demineralized bone matrix. Two surgical models were developed to assess the potential of this 3D osteogenic AMSC autograft. A four-level spinal fusion using polyetheretherketone cages was designed in six pigs to assess the early phase of ossification (8-12 weeks postimplantation). In each pig, four groups were compared: cancellous bone autograft, freeze-dried irradiated cancellous pig bone, 3D AMSC, and an empty cage. A critical size femoral defect (n = 4, bone non-union confirmed 6 months postoperatively) was used to assess the 3D AMSCs' ability to achieve bone fusion. Pigs were followed by CT scan and explanted specimens were analyzed for bone tissue remodeling by micro-CT scan, micro-radiography, and histology/histomorphometry. In the spine fusion model, bone formation with the 3D AMSC was demonstrated by a significant increase in bone content. In the critical-size femoral defect model, the 3D AMSC achieved new bone formation and fusion in a poorly vascularized fibrotic environment. This custom-made 3D osteogenic AMSC autograft is a therapeutic solution for bone non-unions and for critical-size defects.


Subject(s)
Adipose Tissue/cytology , Cell Differentiation , Femur/pathology , Mesenchymal Stem Cells/cytology , Osteogenesis , Regenerative Medicine/methods , Spine/pathology , Animals , Benzophenones , Cell Differentiation/drug effects , Disease Models, Animal , Femur/diagnostic imaging , Femur/drug effects , Fractures, Ununited/diagnostic imaging , Fractures, Ununited/pathology , Implants, Experimental , Ketones/pharmacology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Polyethylene Glycols/pharmacology , Polymers , Prosthesis Implantation , Spinal Fusion , Spine/diagnostic imaging , Spine/drug effects , Sus scrofa , Transplantation, Autologous , X-Ray Microtomography
7.
Cell Transplant ; 22(11): 2161-73, 2013.
Article in English | MEDLINE | ID: mdl-23051152

ABSTRACT

Pig islets demonstrate significantly lower insulin secretion after glucose stimulation than human islets (stimulation index of ∼12 vs. 2 for glucose 1 and 15 mM, respectively) due to a major difference in ß- and α-cell composition in islets (60% and 25% in humans and 90% and 8% in pigs, respectively). This leads to a lower rise in 3',5'-cyclic adenosine monophosphate (cAMP) in pig ß-cells. Since glucagon is the major hormonal effector of cAMP in ß-cells, we modified pig islet structure in vivo to increase the proportion of α-cells per islet and to improve insulin secretion. Selected doses (0, 30, 50, 75, and 100 mg/kg) of streptozotocin (STZ) were intravenously injected in 32 young pigs to assess pancreatic (insulin and glucagon) hormone levels, islet remodeling (histomorphometry for α- and ß-cell proportions), and insulin and glucagon secretion in isolated islets. Endocrine structure and hormonal content of pig islets were compared with those of human islets. The dose of STZ was significantly correlated with reductions in pancreatic insulin content (p< 0.05, r(2) = 0.77) and the proportion of ß-cells (p < 0.05, r(2) = 0.88). A maximum of 50 mg/kg STZ was required for optimal structure remodeling, with an increased proportion of α-cells per islet (26% vs. 48% α-cells per islet for STZ <50 mg/kg vs. >75 mg/kg; p < 0.05) without ß-cell dysfunction. Three months after STZ treatment (30/50 mg/kg STZ), pig islets were isolated and compared with isolated control islets (0 mg/kg STZ). Isolated islets from STZ-treated (30/50 mg/kg) pigs had a higher proportion of α-cells than those from control animals (32.0% vs. 9.6%, respectively, p < 0.05). After in vitro stimulation, isolated islets from STZ-treated pigs demonstrated significantly higher glucagon content (65.4 vs. 21.0 ng/ml, p < 0.05) and insulin release (144 µU/ml) than nontreated islets (59 µU/ml, p < 0.05), respectively. Low-dose STZ (<50 mg/kg) can modify the structure of pig islets in vivo and improve insulin secretion after isolation.


Subject(s)
Glucagon-Secreting Cells/drug effects , Insulin-Secreting Cells/drug effects , Islets of Langerhans/drug effects , Streptozocin/toxicity , Adult , Animals , Blood Glucose/analysis , Glucagon/metabolism , Glucagon-Secreting Cells/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Islets of Langerhans/anatomy & histology , Male , Middle Aged , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...